

Abstract

Software development is a lucrative and popular career option, and in-
cites curiosity even in the general public unfamiliar with programming.
For software developers teamwork is one of the important part of work.
This research shed a light on the topic of teamwork in the context of soft-
ware development. The objectives are to identify the factors a↵ecting on
software developers while working in the team. To find out the it I ana-
lyzed 30 vlogs by software developers on YouTube and conducted personal
interviews with 5 software developers. I discovered many issues that soft-
ware developers experience while working in teams, including communica-
tion within the team, availability/dependency, interruption, and meetings.
Also we found that, more meetings and interruptions can make negative
impact on software developers’s productivity and e�ciency.

Keywords: Teamwork, Meeting, Pair Programming, Interrup-
tion, Remote work

2

Contents

Contents . 3

List of Figures . 5

List of Tables . 6

1. Introduction . 7
1.1. Background for the thesis 7
1.2. Aim of the thesis . 13
1.3. Research methods . 13

1.3.1. Vlogs . 13
1.3.2. Qualitative research 14

1.4. Thesis outline . 14

2. Related Work . 16
2.1. Team and Teamwork . 16
2.2. Team communication . 18
2.3. Meetings . 20
2.4. Software Developer Vlogs 21

3. Data gathering and study design 23
3.1. Data Collection . 23
3.2. Gathering Software Developer data through Vlogs 24
3.3. Card Sorting . 26
3.4. Survey . 29

3.4.1. Interview Questions 31

4. Analysis 1 . 33
4.1. Analysis of Vlogs . 33
4.2. Card sorting Analysis . 39

5. Analysis 2 . 43
5.1. Survey interviews Result 43

5.1.1. Working in team 44

3

CONTENTS

5.1.2. Communication . 46
5.1.3. Meeting . 49

6. Discussion . 54

7. Conclusion . 59

Bibliography . 61

A. Appendix 1 - Vlog List . 69

A. Appendix 2 - Vlog Analysis . 72

4

List of Figures

3.1. Word Frequency . 27

4.1. Card Sorting Result - Meeting Category 40
4.2. Card Sorting Result - Review Category 41
4.3. Card Sorting Result - Team Category 42

5

List of Tables

5.1. Interviewee List . 43

A.2. Vlog list . 71

A.2. Vlogs Analysis . 75

6

1. Introduction

This chapter introduces the background of the subject “A qualitative ap-

proach to investigate di↵erent aspects that have a significant e↵ect on soft-

ware developers while working in a team based on vlog data” and hence

the motivation for this thesis. I tried to find existing research in this con-

text to find out the factors that a↵ect software developers while working in

a team. I found very less material that focuses only on software developers

as most of the research considered the whole team. To do more research

in this field, I collected the data by using vlogs and personal interviews

with software developers. I analyzed the collected data and selected a few

categories where software developers spend more time and face issues in

their daily routines. Based on these categories, I designed an interview

questionnaire. Based on that, I will discuss and conclude the results of

our research.

1.1. Background for the thesis

Software development is a highly lucrative and popular career choice that

piques the interest of even those who are unfamiliar with programming.

Vlogs (video blogs) are becoming popular among software engineers to ex-

plain what it’s like to walk in their shoes daily. Developers give a broad

view of their technical work, covering programming sessions, team meet-

7

1. Introduction

ings, as well as their personal lives through these vlogs. Vlogs by software

developers, on the other hand, give a personal look at many jobs in the

software development sector outside of technical labor. This vlog’s trans-

parency o↵ers a larger view of what developers do in their working days,

how they interact with their coworkers and the factors that influence their

daily performance while working in a team.

Working in a team is one of the main parts of the job of a software devel-

oper. The number of technologies used today also means that it is di�cult

for one person to know enough to do everything required for putting to-

gether a professional application. Many applications are split well into

front-end and back-end, with people very skilled at each but not nearly as

skilled at both. It can be di�cult for people to switch from writing a UI

and then to tuning a database and then switching to tracing lost packets.

Teamwork is important in software engineering. Teamwork has been ex-

tensively studied in several fields, but little of this knowledge has been

applied in the context of software development. In the most popular agile

method, Scrum, work is organized into small, cross-functional teams with

a facilitator and team members. Team members coordinate their work

frequently, such as in daily stand-up meetings [18]. Vinekar et al. [17]

explain that agile development and traditional development have di↵erent

views on teamwork. One of the reasons may be that general knowledge

needs to be tailored to software development to become useful. As a result,

there is a need for further research on teamwork in this specific field.

Extreme Programming (XP) and Scrum are agile methods that direct soft-

ware development in small, self-managing teams. While there are reports

of major improvements with agile development methods over traditional

8

1. Introduction

development methods [30], e↵ective teamwork is still a challenge. In sev-

eral studies in small and large Scrum teams in various consulting and

product development settings in companies of variable sizes over the last

five years, I have observed three recurring challenges:

Communication: Communication throughout the lifecycle of a project is

one of the biggest di�culties in a software developer’s life. Bad communi-

cation in development teams can occur when the team leader does not have

a clear picture of all activities, brief emails that lack clear guidelines, ex-

tended meetings that might have been emailed; and too many distractions

from coworkers when working on a tough task. These sorts of scenarios

cause information flow disruptions and personal confrontations between

developers and team leaders. In today’s environment, where teams are

dispersed across time zones, it requires a lot of e↵ort to coordinate all the

tasks among various developers. It is di�cult to comprehend the chal-

lenges that certain team members are experiencing. Important decisions

are sometimes made by the project manager without consulting the team.

This occurs despite agile development methodologies’ significant emphasis

on communication and collaborative decision-making. In the daily meet-

ing, however, many team members approach only the team leader and not

the entire team. Furthermore, I noticed team members who did not pay

attention when critical issues were presented, as well as a few who fell

asleep in meetings. In our survey, I am discussing with participants their

challenges in communicating with team members.

Availability / Dependency: This problem is deeply related to commu-

nication. After the COVID pandemic, companies allowed their employees

to work from home or remotely. People who work remotely must balance

9

1. Introduction

their professional and personal lives. For instance, if they are working from

home with a newborn, they may not always be there at the same time as

others. They might begin and end at di↵erent times, not to mention leave

their “workstation” during the day. Even if they give a detailed timetable,

it is tough to keep track of them. Their messages may just disappear in

the flow of communication. Unfortunately, one may not know when to

rely on whom.

Meetings: A lot more work might have been done in the number of

man-hours used in a typical meeting. Meetings disrupt the “flow” state of

e�cient software development, forcing engineers to repeat the process of

constructing the mental structures required to create or modify the code.

Are meetings really necessary? No. Some meetings are worthwhile for

attendees. However, how they are constructed is another matter.

If the goal of the meeting is to spread information, it may have been done

using an asynchronous medium such as e-mail. Even inquiries concerning

the material might be answered by e-mail. If the meeting is about making

a choice, the individuals who really need to make the decision are among

the vast majority of those there. That is, everyone who attends but does

not contribute to the decision-making process is wasting their time. A

junction point is rarely so collaborative that a room full of ten individuals

has an equal voice in the path that the team ultimately chooses.

I utilize vlogs in this research to learn about the activities that developers

value and want people to know about in their professional and personal

lives. Vlogs are a richer medium than text-based blogs, which limit the

type of content authors may post. Vlogs are a much richer medium than

text-based blogs, which restrict the type of content authors may post.

10

1. Introduction

Vlogs allow producers to express their life stories through video and audio

that represent their personalities.

Since many di↵erent personal narratives are given and the creative auton-

omy of the creators, developer vlogs can shed light on the comprehensive

experience of what it means to be a software developer, which can help

dispel prejudices about what software engineers do. There are negative

perceptions of what software development “should” be. Working in isola-

tion from others [4], having excellent math abilities [5], and identifying as a

nonathletic white guy [6] are all examples. This stigma may discourage the

next generation of software developers from pursuing a career that is both

collaborative and social [7]. Despite the existence of these negative pre-

conceptions, developers have been working to intentionally remove them

through hashtag campaigns [8], written blog posts [9], and podcasts [10].

However, there has been little research on how to vlog creators and view-

ers might fight these misunderstandings by displaying scenarios in which

technical employees have control over their own stories.

To study how engineers present themselves publicly, I collected and ana-

lyzed vlog (video blog) data from YouTube, a popular online video-sharing

site. I focused on videos portraying a typical day in the life of a software

developer. For the research, I identified 30 vlogs with a total length of 700

minutes and over 10 million views.

A popular format for developer vlogs is the “A Day in the Life of a Devel-

oper” videos. These vlogs recreate a developer’s entire day, from waking

up to eating meals, going to work, what they do at work (such as coding,

testing, meetings, co-running in teams), breaks, and what they do outside

of work (such as running, going to movies, spending time with children

11

1. Introduction

and families, or playing games). Each vlog has its own personal tale and

emphasizes a number of those activities. This vlog o↵ers the impression

that the viewer is physically shadowing the developer without really do-

ing so. Furthermore, the condensed structure of vlogs encourages vloggers

to be careful about the content they share, typically optimizing for what

they believe will be the most useful to share publicly. Understanding what

software developers feel is useful to share as part of their online image, as

well as how the public sees software developers, may assist in acquiring a

better understanding of what software developers find valuable to share as

part of their image.

I observed that vlogs highlighted a wide variety of perspectives at the

intersection of developers’ professional and personal lives, a whole view-

point that is di�cult to capture through typical data gathering methods

like interviews and questionnaires. Vlogs may address subjects such as

company culture, work-life balance, and relationships with coworkers by

not just talking but also showing. Many pieces of epidemiological research

oversimplify software developers’ jobs by portraying them as “mathemat-

ical geniuses” from a university or “no time for joy” workaholics at a huge

technology corporation. Vlogs, on the other hand, reveal that develop-

ers take on a range of collaborative roles and approaches to their jobs, as

seen by this collection of first-person viewpoints. Freelancing, becoming a

lead developer, working at a startup, or switching from a music profession

to coding as you go. It is observed that vloggers were able to generate

a community of aspiring and experienced software developers who were

both encouraged to start and maintain careers in the field. Vlogs allow

developers to be open about their careers, changes (such as losing a job),

and journeys while also allowing others to discuss similar struggles and

12

1. Introduction

o↵er support.

1.2. Aim of the thesis

The main aim of this thesis is to find out the factors that a↵ect software

developers while working in a team. To achieve this goal, I did this two-

fold. The first to study the vlogs presented by software developers from

di↵erent countries about their “a day as a software developer”. The reason

behind using vlogs, in the beginning, was to identify the various activities

done by software developers in their daily work. And the second is to

identify those activities or aspects that could a↵ect software developers

while working in a team, thus a↵ecting their productivity. Based on the

results of the first step, I conducted a survey (personal interviews) to

identify factors that can a↵ect software developers while working in a team.

1.3. Research methods

1.3.1. Vlogs

A vlog is the end result of a video-making process and is used to communi-

cate with a large audience. In this research, I study the comprehensive set

of software developers’ experiences using vlogs. I investigate how develop-

ers explain a day in their lives using vlogs. The main aim is to find out and

analyze all the activities that can have an impact on software developers

while working in a team.

13

1. Introduction

1.3.2. Qualitative research

This involves gathering and evaluating non-numerical data (such as text,

video, or audio) in order to better comprehend concepts, views, or ex-

periences. It can be utilized to gain in-depth insights into a topic or to

develop new research ideas. By using these vlogs, I did qualitative research

specifically to better understand the sorts of materials and how software

developers interact with team members, and how they solve any specific

problem together (in a team). I opted to investigate software workers who

vlog because social media, such as blogs, is a growing resource that soft-

ware developers utilize to communicate their technical work that overlaps

with their personal lives.

1.4. Thesis outline

This section highlights the contents of each chapter in this thesis report.

The chapter-wise outline is as follows:

Chapter 1 (Introduction): This chapter introduces the thesis work. Details

regarding the background of the thesis, the aim of the thesis, research

methods, and thesis structure are provided in this chapter.

Chapter 2 (Related Work): This chapter will provide a review of past

relevant research for this thesis work. It shares the detailed work done in

the fields of teamwork, team communication, meetings, and VLogs.

Chapter 3 (Data gathering and study design): This chapter provides de-

tailed planning and design of the experiment. It includes a detailed de-

scription of gathering software developer vlogs, card sorting survey, and

preparation of the survey (personal interview).

14

1. Introduction

Chapter 4 (Analysis 1): This chapter highlights the data analysis of Vlogs

and card sorting and interprets the results.

Chapter 5 (Analysis 2): This chapter highlights the data analysis of the

survey (personal interviews) and interprets the results.

Chapter 6 (Discussion): This chapter provides an overview of the results

and provided a discussion on important aspects of the study.

Chapter 7 (Conclusion and Future Work): This chapter provides the con-

clusion to this research and the future scope of the research topic.

15

2. Related Work

This section presents the concepts of team, teamwork, software teams’

communication, distributed software development, and distributed agile

software development. The concept of teamwork has its roots in the social

sciences. One shall discuss teamwork as presented in the social sciences

to get a better understanding of teamwork in distributed agile software

development.

2.1. Team and Teamwork

Research on teamwork has attracted research from many disciplines [31,

32]. Dickinson et al.[33] have proposed a conceptual model of teamwork

consisting of seven components, namely: communication, team orienta-

tion, team leadership, monitoring, feedback, backup, and coordination.

In their research, measurement items for each of these components are

presented through critical incident methodology, where the authors have

defined the measurement items for each component by observing the be-

haviors of the individuals.

Referring to the teamwork models of Dickinson et al. [33] and Salas et al.

[34], multiple studies have been conducted in the agile software community

to investigate the nature of agile teams. Moe et al. [36] investigated the

16

2. Related Work

nature of self-managing agile teams with the help of Dickinson’s teamwork

model by conducting a case study in a software development company

that uses Scrum. Their findings indicate that the specialized skills of team

members, as well as the corresponding division of work, were the primary

barriers to e↵ective collaboration. Furthermore, they suggested trust and

shared mental models should be considered for agile teams apart from the

seven components of Dickinson’s model.

Knowledge teams, like other teams, must acquire and manage important

resources in order to accomplish their tasks. Expertise, or specific skills

and knowledge, is the most crucial resource for knowledge teams, yet sim-

ply having expertise on a team is inadequate to deliver high-quality work.

To maximize the value of expertise, it must be managed and coordinated.

To put it another way, teams must be able to successfully manage their skill

and knowledge inter dependencies through expertise coordination, which

comprises recognizing where expertise is located, understanding where ex-

pertise is needed, and bringing needed expertise to be. The study analysis

finds that expertise coordination has a high link with team performance

that persists even after controlling for team input characteristics, the avail-

ability of expertise, and administrative coordination. [16]

An early study by Bannon et al. [15] of the command history of a research

group observed that these computer users did not complete tasks in an

orderly, linear fashion, but rather took on multiple tasks and switched be-

tween them. Czerwinski, Horvitz, and Wilhite [14] found similar behavior

in their diary study of task switching behavior, as did Gonzalez and Mark

[13]’s study of analysts, developers, and managers at work. Czerwinski,

Horvitz, and Wilhite’s [14] participants reported an estimated 0.7 inter-

17

2. Related Work

ruptions per task and indicated that they not only switched tasks of their

own accord but were also frequently externally interrupted. Studies in the

workplace have consistently found interaction to be a significant compo-

nent of knowledge work. Hudson et al. [12] found that managers spent 46

percent of their time communicating with others and 19 percent of their

time on unplanned communication. Whittaker, Frohlich, and Daly-Jones

[11] tracked two mobile knowledge workers and found that informal inter-

actions were a significant component of the work, comprising 31 percent

of total work time. They also observed that these contacts were typically

short, context-dependent, and opportunistic. O’Conaill and Frohlich [3],

drawing on the same data to look at disruptive, unscheduled interactions,

concluded that such interactions were beneficial for the interrupted party

but disturbed workflow, as workers often failed to resume the interrupted

task. Interruptions were determined to be crucial to work in Perlow’s [2]

ethnography of software developers, but the large number of interruptions

combined with a lack of control over interruption incidence led to employ-

ees reporting high levels of stress and frustration.

2.2. Team communication

Interruptions were determined to be crucial to work in Perlow’s [2] ethnog-

raphy of software developers, but the large number of interruptions com-

bined with a lack of control over interruption incidence led to employees

reporting high levels of stress and frustration. Aside from measuring and

interpreting code and bug counts [45], the availability of publicly accessi-

ble communication artifacts has enabled academics to investigate trends in

software development in significantly more depth than would be conceiv-

able if just technical artifacts were evaluated [46]. This type of evidence

18

2. Related Work

has been used to assist analysis at the individual and team levels, o↵er-

ing insights into participants’ contributions to code. Such findings may

be found in the literature on communication and coordination from both

open-source software (OSS) and closed-source software (CSS) repositories.

For example, in the OSS environment, Abreu and Premraj [46] analyzed

the Eclipse mailing list and discovered that developers interacted most

often during release and integration phases, but that greater contact was

also associated with a larger number of defects introduced.

Bird et al. [47] verified that the more software development a person

does, the more coordination and managing he needs to do. Cataldo et

al. [48] discovered that the practitioners who communicated the most and

also contributed were the most engaged throughout software development.

Furthermore, Shihab et al. [49] discovered in later research that sugges-

tions and actions mentioned during team communication were connected

with subsequent software development activities executed while analyzing

the GNOME OSS project.

The generation of insights like the ones just outlined adds to the impor-

tance of researching team communications. Indeed, Datta et al. [44]’s

SNA research of agile developers’ cooperation on the IBM Rational Jazz

platform discovered that developers’ expressions during frequent contact

contained a plethora of important information, far more than could be

gained from studying source file modifications alone. Previous research

(published in 1994) on the activities of software engineers discovered that

up to 50% of practitioners’ time was spent on interpersonal communication

and collaboration while solving software problems [43].

19

2. Related Work

2.3. Meetings

According to Rogelberg et al. [42], employees spend an average of 5.6

hours per week in planned meetings. While meetings are crucial for good

cooperation [40], multiple studies have found that a large part of meeting

time is seen as ine↵ective [39].

Kau↵eld and Lehmann-Willenbrock [40] investigated micro-level processes

in team meetings to learn more about what makes these meetings e↵ec-

tive. Their findings revealed that more functional contact in team meet-

ings, such as problem-solving interaction and action planning, was related

to higher team productivity [40]. Furthermore, they discovered a corre-

lation between positive procedural communication in team meetings (i.e.,

remarks aimed at structuring and arranging the conversation) and team

success.

Scholars have researched several meeting elements, such as meeting orga-

nization and frequency. Blue Dorn et al. [38] demonstrated that standing

meetings may be cut in half without sacrificing the quality of the decisions

made. Luong and Rogelberg [37] observed that “the number of meetings

an employee had per day was associated with increased daily exhaustion as

well as greater subjective stress.” Furthermore, Zijlstra et al. [35] discov-

ered that “being interrupted repeatedly had a greater e↵ect than a single

longer interruption.”

The practice of holding daily meetings in software development teams

gained popularity with the advent of agile methodologies such as XP and

Scrum, which need daily meetings. Daily meetings are becoming standard

practice in agile software projects [32].

20

2. Related Work

The daily meeting is sometimes referred to as the “Daily Scrum” in the

Scrum environment [31]. The phrase “stand-up meeting” is also used to

underline the idea that all meeting participants should stand in order to

avoid lengthy discussions [25]. The meetings should take no more than 15

minutes, with the goal of improving communication, highlighting and en-

couraging speedy decision-making, and identifying and removing barriers

[24]. According to Schwaber [31], team members should address (1) what

has been done since the last meeting; (2) what is planned to be accom-

plished before the next meeting; and (3) what impediments are impeding

the completion of task items in the backlog.

In our earlier research, we found that the daily meeting was seen as an

important forum for information flow in the project [23] and to defend

decisions and show other team members that a great deal of work had

been accomplished since the previous meeting [22].

2.4. Software Developer Vlogs

Souti et al. [21] studied and analyzed 130 vlogs presented by software

developers and conducted a survey with 335 software developers at a large

software company. They found some interesting results. They found that

developers were motivated to promote and build a diverse community by

sharing di↵erent aspects of life that define their identity and by creating

awareness about learning and career opportunities in computing. Through

the various topics discussed in the vlogs, developers share their experiences

from learning programming and their career as a developer in di↵erent

situations, as well as their journey as a developer in the long run and the

e↵ect these career decisions have on the overall quality of life. Also [21],

21

2. Related Work

they did comment analysis, and they found that the vlogs were valuable

to the audience in finding information and seeking advice.

22

3. Data gathering and study design

3.1. Data Collection

Qualitative research uses a variety of methods, including interviews, focus

groups, and observation [24]. Unstructured interviews may be conducted

with open-ended questions on a certain topic, and the interviewer adjusts

to the replies. Structured interviews feature a set number of questions

that are asked of each participant. It is often done one-on-one and is

ideal for delicate or in-depth issues. When group dynamics and collective

viewpoints on a topic are needed, focus groups with 8–12 target mem-

bers are frequently employed. Researchers might be participant-observers

who share the subject’s experiences, or they might be non-participants or

detached observers.

In the first step, I wanted to get information about the daily routine of

software developers. In ideal conditions, the best practice is to conduct

one-to-one interviews, but due to time constraints, I have analyzed and

gathered the information from the vlogs that are published by software

developers on YouTube.

After the analysis of the vlogs, the other software developer’s insights on

the gathered data were required. I used a card sorting survey to find out

23

3. Data gathering and study design

the activities that have an impact on software developers while working in

a team.

Finally, to discuss the factors a↵ecting software developers while working

in a team in-depth, I conducted one-to-one interviews with experienced

software developers.

3.2. Gathering Software Developer data

through Vlogs

In this research, I evaluate how developers describe their day on YouTube

using vlogs. According to Statista 2022, YouTube can reach a vast audi-

ence of more than 2.6 billion people without charging a fee. These charac-

teristics make YouTube a welcoming and appropriate platform for hosting

socio-technical video material. Vlogs, which are generated by develop-

ers, are one example of such socio-technical material being generated by

developers.

For two main reasons, I decided to focus on YouTube vloggers rather

than other platforms. First, “everyone is already on YouTube,” with over

2.6 billion people using the network. Second, YouTube has become the

most popular platform for vloggers, with recent research using the words

“YouTuber” and “vlogger” interchangeably.

I utilized a multistage sampling technique to obtain an initial set of 42

YouTube vlogs that represented countries or regions with a significant de-

veloper presence. The initial set of videos were discovered by searching

YouTube for phrases like “developer life,” “day in the life,” and “day in

24

3. Data gathering and study design

the life + software engineer.” The resulting videos included developers

from North and South America, Europe, and Asia. I conducted a focused

search using the phrases “Germany, Canada, the United States, and In-

dia.” Other Asian countries, such as Singapore, Bangladesh, and China,

were also represented in the findings. I discovered an additional 8 videos

via steamrolling (1) YouTube recommendations, which revealed vlogs not

included in the original sample, and (2) other vloggers mentioned in our

vlog sample. After deleting 12 videos from the initial research (4 videos

that were not in English, 5 videos that were recorded more than once,

and 3 videos of various categories, such as a recorded conference speech),

I came up with a final sample of 30 videos. All 30 videos were uploaded

within the last 2 years (January 2020–May 2022) and are from 30 distinct

developers. In the rest of the report, these vlogs are referred to as V1-V30.

I perceive vlogs as a chance to establish a community of practice in which

content creators share a video about their experiences as developers and

viewers respond to it. In this context, each video o↵ers a chance for vlog-

gers and viewers to consume, share, and respond to their perception of

what it means to be a developer. These vlogs represent a developer’s

whole day, including waking up, eating, getting to work, what they do

at work (such as coding, testing, meetings, and teamwork), breaks, and

things they do in their spare time (working out, going to movies, spending

time with kids and families, or playing games). Each vlog tells a di↵erent

tale and stresses di↵erent aspects of these activities.

25

3. Data gathering and study design

3.3. Card Sorting

I analyzed the transcripts of these 30 videos. I transcribed the videos and

emphasized the major factors considered being said by vloggers, as well

as the activities they perform as part of their daily lives. I found a few

common activities in their vlogs. By using the word frequency calculator,

I found that the major topics that are covered by developers in their vlogs

can be categorized into 5 major categories, which are, Learning process,

Coding / Programming, meetings, working from home/ Remote work, and

lifestyle. So, as a next step, I wanted to know about the factors that can

impact software developers while working in a team. A software devel-

oper’s workday may be impacted by a range of variables, including the

activities being performed, meetings, interruptions from coworkers, the in-

frastructure, or the o�ce atmosphere. Some of these characteristics create

activity and context shifts, which can lead to fragmented work and have a

negative impact on the developer’s perceived productivity, task progress,

and output quality.

As there is a huge amount of text in the video transcript, it is very di�cult

to calculate the frequency of any word manually. So, I used the word fre-

quency counter (https://codebeautify.org/word-frequency-counter) to cal-

culate the word frequency.

So, based on this result, I have decided to use the card sorting method to

see how the other software developers see these topics. Jennifer Kumar

[26] has prepared a list of words and phrases used by software developers

in daily conversations at work. I have decided to select the keywords that

are in the list of [26] as well as the most frequent words that I got from

the video transcripts. I have selected 24 keywords that are related to

26

3. Data gathering and study design

software development and are mostly used in the vlogs. Ex. The word

“meeting” appeared 102 times in the context of daily meetings, problem-

solving meetings, etc.

Figure 3.1.: Word Frequency

Card sorting is best regarded as a tool that help to understand the indi-

viduals, rather than as a collaborative approach for developing navigation.

The method is straightforward. You hand out a set of cards (usually index

cards) with sample material printed on them. Alternatively, you might give

users a set of content cards as well as a set of categories and ask them to

sort the cards into the specified categories. In any case, you document the

findings, evaluate them, and apply what you’ve learned to your project.

Finally, the third category. During the hybrid card sort, participants are

27

3. Data gathering and study design

asked to sort cards into categories, but they can use either the categories

provided by the researcher or construct their own. It enables them to

add some structure to the activity while also allowing the participants

some freedom and the ability to express themselves. It also enables the

researcher to provide the participant with an example of what they are

searching for without totally directing them to (possibly biased) results.

As the name implies, hybrid card sorts are more flexible than closed cart

sorts. Whether you want to know whether participants prefer your cur-

rent categories or if new ones make more sense to them, you might want

to explore the hybrid option. I chose hybrid card sorting, which combines

open and closed card sorting approaches. Participants can sort a set of

cards into established categories, but they can also make their own. The

hybrid card sorting technique is used when you already have certain cat-

egories established but you need input on how the remaining ones should

be labeled. The main reason behind it is that it allows the participants a

certain level of freedom and the opportunity to showcase their opinions.

Also, it is possible to provide an example to the participants with one

or more sorting categories. As the name indicates, hybrid card sorts also

allow more flexibility than closed-cart sorts. Participants can create their

own category to sort the cards.

The next step consisted of identifying experts that would perform as

“judges,” who would select the most appropriate items to form the con-

structs and group them into the predetermined dimensions. Twenty soft-

ware developers (who are my former colleagues and friends) were invited

to participate in the study, but only 11 agreed to participate. All of them

were working as software developers with good experience in this field. The

reasons for such a choice were based on the assumption that these judges

28

3. Data gathering and study design

would have good knowledge of what is involved in academic research but

also have su�cient acquaintance with the details and peculiarities under-

lying the industry.

The judges were contacted personally and informed of the purpose of the

study. Then they were asked to choose those items they judged more

appropriate as an indicator of the construct and to group each item into

any of the predetermined dimensions, putting them into the corresponding

column.

3.4. Survey

The success of any software development project lies in careful planning, a

skilled development team, and clear communication among team members,

both internally within the software development company and externally

with the customer or product owner. And a software developer is the core

component of a team. Identifying the factors that influence the perfor-

mance of team members is crucial in the software development industry

because software development requires a team e↵ort. Thus, the purpose

of this study was to examine the factors that influence the performance of

software developers while working within a software development team.

The survey focused on software developers’ team activities. Based on the

vlogs’ analysis and card sorting results, I have designed a questionnaire for

conducting interviews. As per the vlog analysis, I found that the activities

that can impact a software developer’s e�ciency include coding and various

meetings. I found that from the first study results, the categories “Meeting,

Review, and Team” contain those activities. I decided to use them as a

29

3. Data gathering and study design

part of our interviews.

Several questions were concentrated on these three categories of activities

that developers conduct daily. The list of activities was compiled from

the 5 categories described in the vlogs. I included five distinct activities

from the five categories. The survey was divided into three sections. The

first section consisted of questions on personal information. The second

section inquired how much time developers spend attending meetings. Fi-

nally, the final section inquired about developers’ coding routines and pair

programming.

Initially, I planned to prepare a survey and share the link on social media

platforms such as Twitter, but due to a time barrier, I decided to focus

on the quality of the result instead of quantity. Interviews are a good way

to both cover a range of topics and make sure that important information

is not missed in a one-to-one interview. They are an e↵ective method for

providing reliable, comparable qualitative data with di↵erent participants,

even if they are given di↵erent interviewers. The level of conversation that

interviews allow can provide new perspectives and comprehension of the

subject at issue.

Interview design:

Generally, interviews are conducted either way, with an individual or with

a group of people, called focus groups. In this research, I have conducted

individual interviews where interviews are done one person at a time. Ini-

tially, I planned to voice record the interview session, but due to privacy

concerns, I decided to write down the notes during the interview and later

elaborate on them. Interviews were conducted in English, transcribed, and

finally summarized and structured for further analysis. The following are

30

3. Data gathering and study design

the features of the interview that I conducted:

Open-ended questions: Through these questions, I aimed for an extended

discussion of the topic instead of just a yes or no. In this way, interviewees

had the freedom to express their opinions based on their experiences.

Semi-Structured format: I focused on getting an in-depth knowledge of

the topic through interviews. This can be achieved if the interviewer has

a set of questions and issues that are to be covered in the interview and

asks additional questions whenever required. Due to the flexible format, I

have chosen semi-structured interviews.

3.4.1. Interview Questions

1. What is your job profile?

2. How long have you been working as a software developer?

3. How do you feel about working in a team environment?

4. Have you ever had di�culty working with a manager or other team

members?

5. Why is proper communication important in a team?

6. What are some problems in a software development team’s commu-

nication? Where, according to you, can communication go wrong?

7. How many hours do you spend attending meetings?

8. Which of the following meetings do you participate in? Brainstorm-

ing meetings, Check-in meetings, Decision-making meetings, One-on-

31

3. Data gathering and study design

one meetings, Problem-solving meetings, Quarterly planning meet-

ings, Team-building meetings?

9. How do these meetings impact your quality of work as a software

developer?

10. Are there any other thoughts related to team meetings?

11. How many hours do you spend working with code or programming

(e.g., implementing, bug fixing, adding features) in a week?

12. How does the interruption from another coworker a↵ect your work?

How frequently does it happen?

13. What are your thoughts on pair programming?

14. What are the advantages and disadvantages of pair programming?

32

4. Analysis 1

4.1. Analysis of Vlogs

In our study of vlogs, I discovered that developers described experiences

at the interface of their professional and personal lives. I transcribed the

videos and emphasized the major factors considered being said by vloggers,

as well as the activities they perform as part of their daily lives. I found

a few common activities in their vlogs. I outlined five categories: their

learning process; programming; meetings; home o�ce/remote work; and

lastly, their lifestyle. But I am going to focus more on meeting and coding/

programming categories as activities performed in these categories require

team e↵orts. Although teamwork has been widely researched in a variety

of domains, little of this information has been utilized in the context of

software development and negligible information. One of the reasons might

be that broad knowledge must be customized to software development in

order to be beneficial. As a result, there is a need for further research on

teamwork in this specific field. Also, I noted some additional findings at

the end of the analysis. They are not covered in this research but can be

useful for future work.

1. Meetings

Meetings were a significant work-related activity. Of the 30 videos,

33

4. Analysis 1

all 30 developers (video creators) talk about their daily meetings.

Marsela [V1] explains that she has various meetings during her work-

day. Most of them talk about their daily meetings or stand-up meet-

ings (report meetings) in which they explain their progress on the

assigned project or task. There were three kinds of meetings: sta-

tus meetings, kick-o↵ meetings, and spontaneous meetings. Status

report meetings, which include daily scrum-style stand-ups or in-

dividual check-ins with a manager, were the most prevalent of the

three [V27]. These sessions gave developers the opportunity to seek

assistance. “Having a stand-up in the morning absolutely helps with

that because it gives you an opportunity to say, ‘hey, I’m having

a small problem with this part’”. “Can I get any assistance? and

others are eager to help.” [V6]. Project kick-o↵ meetings allow new

project team members to “understand precisely who else is on the

team... to not plan work but how we want to work; what type of

meetings we want; how we want to monitor our work, and that sort

of thing” [V19]. Later in the project life cycle, videos showed devel-

opers together planning project sprints at the start of a project or

conducting retrospective sessions at the end of a project. Unsched-

uled meetings spurred by a colleague coming by their desk to clarify

a task or a spontaneous cluster of coworkers around a developer’s

code on the screen were examples of other forms of meetings. This

wide range of sessions demonstrated the breadth of communication

that occurred within a team. Here are 3 common barriers to e↵ective

communication.

Defensiveness:- You take any form of criticism/ advice as an accusa-

34

4. Analysis 1

tion that you must prove wrong at all costs. You take it as a form of

disrespect and a hurtful statement that you cannot accept. Hence,

it’s impossible for you to actually take the advice into consideration

and make a change.

The wrong objective from discussions:- Continuing from the last

point, taking discussions as battles where you either defeat or get

defeated. You want to win this argument and prove the other party

wrong instead of looking at it as an opportunity to learn and a chance

to see things from another perspective and reach some sort of middle

ground.

Bad listening: Listening isn’t the same thing as hearing. Listening

means paying attention to what the other party is saying, grasping

it, genuinely considering it, and trying to understand it.

2. Coding and programming

As expected, developers are present in the vlogs doing code and other

coding activities as part of their profession. There are di↵erent ways

to demonstrate coding, but the most common is a time-lapse video

of the coding session with the displays blurred. Once developers

have determined which job they will work on, they must become ac-

quainted with the appropriate artifacts and code. They study the

ideas in advance, such as “authentication”[V12], or while they work

on the tasks, which include implementing, testing [V4, V9, V22], de-

bugging [V24], executing and building, and releasing and deploying

code to deliver new features or patch defects [V13, V28]. They also

35

4. Analysis 1

demonstrate activities such as reading task-related concepts [V21],

planning and drawing out a solution [V29], looking for answers on

Stack Overflow or GitHub [V14, V18], and interacting with reposi-

tories [V14]. When not actively implementing, developers evaluate

code, which is defined as “essentially a commit that somebody sub-

mitted, and they are forwarded for review in our team just to figure

out if there are any flaws and issues that happened in the code.”

[V8]. The videos typically include code reviews. Code reviews are

sometimes high-priority activities [V27]. The videos also showed the

team examining pull requests from other teams [V27], interns [V18],

and younger team members.

3. Learning process

Vlogs also provided advice and suggestions on how to get started in

the field of programming by deciding which programming language

to use. This happens all the time. It begins with which program-

ming languages are excellent initial languages to learn [videos 1, 5,

6]. Vlogs also explained that the programming language you select

is frequently determined by the task at hand and provided instances

from their professional expertise. For example, one vlog describes

how they decide which programming language to use: “In terms of

what coding languages I use at work, it really depends on the assign-

ment.” My team operates across many business divisions, so we’re

always switching. I mostly utilize JavaScript for our node-based

apps, but I also use a lot of Java [V7]. According to another video,

programming languages such as C# “assist in grasping essential con-

cepts of a programming language such as data types, object-oriented

36

4. Analysis 1

control statements, data structures and algorithms, reading network

protocols, and the graphic debarment.” Vlogs go on to detail the

many responsibilities within the development, such as the front-end,

which requires “HTML, CSS, and some JavaScript” [V21], and the

back-end, which requires “C#, SQL, and other databases like Mon-

goDB” [V22] [V21]. This vlog also discusses the advantages of being

a full-stack developer, capable of working on both the front and back

ends, as “having that jack-of-all-trades is excellent because you can

work at a smaller firm where you can be very e↵ective and add a lot

of value to the table” [V21].

4. Work from home/remote work

In their vlogs, developers discussed working remotely and the bene-

fits that come with it. The developers were able to work from several

places thanks to remote work. Some developers prefer to work from

home at “their own” workstations and equipment [V23]. This re-

duces time spent driving to and from work [V28]. Others, on the

other hand, may “just take the laptop and pretty much go to other

places and simply work from there” [V16]. Working from Florida

rather than Chicago in the winter [V26] or working from Berlin for a

change of scenery [V30]. When discussing working remotely, devel-

opers frequently mentioned how “easy it is to get distracted” when

working from home [V21], and thus many frequently consider work-

ing spaces [V20] or finding co↵ee shops [V24] or public lounge spaces

[V28] to work from in order to stay productive.

COVID-19 and Quarantine Because I did our video analysis in the

summer of 2020, our sample of vlogs includes videos in which de-

37

4. Analysis 1

velopers discuss how they work during a worldwide pandemic and

the added productivity issues they experience during a crisis. Many

developers who were already working remotely and some who were

moving to remote work expressed their problems in these vlogs. Non-

ergonomic work environments [V18] and obstacles to their mental

well-being [V26] were among these problems. Specifically for free-

lancers, the pandemic resulted in project cancellations since some

firms didn’t have the money to pay all the engineers and remote

engineers [V23]. The videos also highlighted suggestions on how

teams were overcoming problems, such as staying socially engaged

with their colleagues through “remote lunches” [V30] via video chat.

In some respects, these vlogs serve as a historical capsule of how

software engineers functioned during that di�cult epoch of remote

work.

5. Lifestyle

Healthy living and well-being Some vlogs stressed the significance

of maintaining a healthy lifestyle, which includes frequent workouts,

and led by example by displaying various activities they participate

in via the vlogs. In these video parts, developers discussed the impor-

tance of developing long-term habits such as staying hydrated [V26]

and practicing meditation [V18]. Many vlogs also include physical

and social activities such as discussing exercises, nutritious recipes,

and eating habits to illustrate how they live a healthy lifestyle. De-

velopers stress the need to take frequent breaks during the day to

go for a walk, go to the gym [V11], [V14], [V18], or participate in

team sports with friends, such as tennis [V7], basketball [V13], and

38

4. Analysis 1

martial arts [V19].

4.2. Card sorting Analysis

I created a link and sent it to my software developer friends, and asked

them to sort the given cards, which contain activities performed by soft-

ware developers. And I got 11 responses from them. As a result, I received

11 di↵erent categories, of which 2 were defined by us (Programming and

Team) and the other 9 were defined by the participants, which were: com-

fortable with/in, meeting, project management, review, skills, time man-

agement, team leader, the first thing to do, meet in person.

I am focusing on only three categories that are related to team manage-

ment: meetings, review, and team. Here are the card sorting results for

these 3 categories.

According to the meeting category result, all 11 participants attend daily

standup meetings. Also, 8 participants are working in an Agile-Scrum

methodology, which has di↵erent types of meetings like sprint planning,

retrospective, sprint review, and backlog refinement, which consume soft-

ware developers’ time. Also, code review (3), pair programming (5), and

knowledge transfer (6) are important team activities that are sorted in this

category.

According to the team category, 4 participants think “bug fixing” should

be done in a team. On average, six participants sorted the activities that

are performed after finishing with coding into this category, e.g., bug fixing,

code integration, code review, pair programming, and testing.

39

4. Analysis 1

Based on these results, I choose the whole meeting category, pair pro-

gramming, and knowledge transfer activities, which can impact more on

the productivity of software developers while working in a team.

Figure 4.1.: Card Sorting Result - Meeting Category

40

4. Analysis 1

Figure 4.2.: Card Sorting Result - Review Category

41

4. Analysis 1

Figure 4.3.: Card Sorting Result - Team Category

42

5. Analysis 2

5.1. Survey interviews Result

Here is list of Software developers who participated in the one-to-one in-

terviews. To identify them I have named them as P1, P2, P3, P4 and

P5.

No. Gender Job Title Age Experience Working

Country

Company

Location

(in years)

P1 M Software

Developer

47 3 Germany Germany

P2 F Full stack

Developer

29 7 Germany Germany

P3 M Backend

Developer

27 5 India India

P4 M Full stack

Developer

32 10 Germany Germany

P5 F Frontend

Developer

28 5 India India

Table 5.1.: Interviewee List

43

5. Analysis 2

5.1.1. Working in team

To envision, design, develop, and implement software that supports cor-

porate processes and functions, software development teams are made up

[28]. These teams work in rapidly changing, knowledge-intensive situa-

tions where knowledge exchange and integration are essential for success.

Furthermore, the essential knowledge, skills, and experience for software

development projects are too vast and complicated for any single developer

to possess. As a result, software development projects need the participa-

tion of various team members with a wide range of knowledge, skills, and

expertise [29]. Cooperation between team members gets increased when

the quality and acceptance of ideas are high within the team. Therefore,

mutual support can be considered an important element of teamwork that

enables the team members to achieve the team goals in an e�cient and

e↵ective way.

The cross-functional component of software development teams refers to

the distribution of project expertise among several cross-functional mem-

bers. Team members may face task conflict during the project if there

is no shared understanding and common information. [P1] [P2] [P4] [P5]

In this sense, task conflict refers to conflicts and opposing viewpoints and

attitudes about a certain task.

Simply being able to discuss a problem with someone who is also famil-

iar with the domain and context helps a lot. Enables pair- and mob-

programming when useful. Software development is a very diverse field.

Being proficient in all things a project might involve makes it hard to be-

come good at anything. Or you will likely deliver sub-par products in some

ways. Having other developers available to review your code helps identify

44

5. Analysis 2

and fix bugs before launching new versions. [P1] [P2] [P3] [P5] Having to

coordinate development through version control (and possibly CI/CD) also

increases the likelihood of proper version management, making rollbacks

and troubleshooting easier.

Working alone can be a fun challenge though, but I find it best suited for

personal projects where you can experiment more for fun and just try new

technologies with your own ideas. [P4] For professional work, all projects

should have at least 2 developers to enable discussions and code review.

“Every teammate has their own education, experience, and skills. It is only

natural for expertise to be exchanged when working together. When devel-

opers pair up, knowledge sharing is encouraged through code reviews and

walkthroughs, retrospectives, mentorship, and continuing education pro-

grams”. [P1]

“Not only is information exchanged, but coding quality improves when a

coding standard is maintained and enforced. The idea is to establish ’good

enough code’ and utilize code reviews to regularly enforce the adoption of

style standards. Even from scratch, it should only take a few weeks for

everyone on the team to start using the standard rigorously. Code will be

simpler to understand, defects will be easier to identify during the life of

the project, which can span a decade or more”.[P2]

“Working together towards the common goal of completing a functioning,

finished product can increase e�ciency. When teammates encourage and

help each other to finish a product, it can reduce production time and pre-

vent mistakes that might occur during project completion”.[P3]

“The most important thing in a team is to review each other’s work. Re-

45

5. Analysis 2

viewing other developers’ code means reading other developers’ code can

help in improving my skills”.[P4]

“The belief that we can do almost anything because we believe in each other.

It’s amazing how we can comprehend one other with just a few seemingly

unimportant words. Furthermore, we help each other improve. And we

demonstrate our appreciation and regard for one another in subtle ways”.

[P5]

5.1.2. Communication

Communication is a critical component of cooperation because it allows

team members to share information, coordinate activities, and provide

feedback. The correct information should always be sent to the correct per-

son via an e↵ective communication channel, without changing the original

message [P3] [P4] [P5]. If the message is distorted while being transferred,

it may fail because erroneous information was delivered. As a result, a

feedback system is beneficial so that both the sender and the recipient are

aware of the validity of the communication. When team communication

is of high quality, it serves as the basis for other factors that drive team

performance [P2]. As a result, communication may be seen as an essential

component in the formation of a high-performing team.

Developing a product entails several procedures, phases, and iterations.

Other team members must understand each stage in order to contribute.

For example, they must comprehend what you have accomplished, how

it will operate, how it should be implemented, and what problem it will

address.

46

5. Analysis 2

Communication is a fundamental talent that all people who want to be

successful in their jobs must possess. Though there are many talents that

software engineers must learn, communication skills are essential for sur-

vival and advancement. [P1] [P2]

When it comes to team cooperation, a strong communication skill set is

vital for project success. Poor communication frequently leads to failure

and increases costs. Using the developer’s technical expertise, the team

works on a few challenges to make the end user’s life simpler. All prod-

ucts/services must assist them in a way that adds value to their lives. As a

result, excellent communication is essential both inside the team and with

consumers. [P1] [P2] [P3] [P4] [P5]

Organizations fall into a trap as technology advances, particularly in the

software development business, where we just enjoy the new great collab-

orative tools that come out. Communication is scattered among an exces-

sive number of communication channels, including emails, Skype, Slack,

Flock, Microsoft Teams, sticky notes, interesting new collaborative tools,

and so on. While the communication aspect remains valid, we must recog-

nize that information disseminated over too many channels is di�cult to

track. Furthermore, you cannot expect all of your team members to keep

track of all those channels and remain on top of every piece of information

while focusing on their core work. [P2] [P4] [P5]

Another consideration in communication is availability. When their cowork-

ers do not work from home, individual employees do better. The amount

to which coworkers work from home appears to have an impact on the

individual employee’s performance. The greater the percentage of cowork-

ers who work from home, the lower the employee’s performance. Working

47

5. Analysis 2

from home causes employees to become more focused [19]. Because team-

mates are not always available, it will require greater e↵ort on the part of

the individual employee to put their talents and expertise to use. [P1] [P3]

[P5]. Also, at some point in time, some component of a task is dependent

on a coworker’s task, but he or she is not yet through with the task. In that

situation, you must wait until he or she has finished it. This dependence

issue arises several times when working in a team on the same project

feature. [P1] [P3] [P4] Although working from home does not imply that

employees are absent, these findings support the notion that digital pres-

ence cannot really compensate for bodily presence when evaluated from

the perspective of coworkers. This is also determined by the type of job.

“Without communication, there’s no foundation for teamwork. And with-

out teamwork, there’s no team. You essentially just have individuals in the

same department working separately towards a common goal”. [P1]

“It contributes to the development of a harmonious code of conduct in

which general morale and the substance of our moral principles are re-

markably experiencing an ever rising unique sense of belonging to an ever

bigger collective uniqueness of shared insights for the greater good. Fur-

thermore, it teaches us to observe ever more exceptional rules of conduct in

all that we are ever focused on and putting out in an ever more remarkable

manner”. [P2]

“Open communication and collaboration are conducive to increased learn-

ing opportunities and creativity.When teammates feel comfortable express-

ing themselves, it leads to the introduction of new ideas, concepts, and

processes. This can create changes in the final project and innovation

where ideas may not have arisen when working independently”. [P3]

48

5. Analysis 2

“Teams that communicate execute tasks faster and more e�ciently than

others. They are also more precise than others in their profession. Ef-

fective communication also helps team members to understand their own

duties as well as the roles of others in the team”. [P4]

“Without communication in a team, it is impossible to grasp how far each

member has come and how much potential everyone has.” In the end, it will

result in a disordered team that is less capable of achieving goals. E↵ective

communication also helps team members to understand their own duties

as well as the roles of others in the team”. [P5]

5.1.3. Meeting

Software engineers meet in a variety of ways and with varying meeting

styles. A software engineer meeting is held to share information, collabo-

rate on projects or problems, debate new initiatives or assess progress on

previous ones, and achieve a consensus among colleagues. Meetings are

used by software engineers in three ways: team meetings, walk-thorough,

and face-to-face meetings.

All the developers from the vlogs are attending at least one meeting daily,

but according to V7, V19, and V23, they spend more time attending meet-

ings during their day, so I decided to ask our participant interviewees about

how it a↵ects their daily schedule of work when there are multiple meetings

in a day. So, I got some feedback from them as follows.

For business purposes, such as knowledge transfers and bug triage, we re-

quire standard meetings. Basically, any meeting that is necessary to com-

plete your task is acceptable. Certain meetings take place because people

49

5. Analysis 2

do not collaborate as they should, which disrupts our momentum. [P1]

[P4] [P5] All of the participants stated that they feel better about their

workday when they can spend parts of it working on code rather than

meetings, distractions, or administrative responsibilities. While meetings

were frequently viewed as a waste of time, [P2] [P3] [P5] answers defined a

productive workday as one in which they engaged in excellent, constructive

talks, made key project choices, or developed contacts that would be useful

in the future. Because developers frequently regard meetings and interrup-

tions as unproductive, previous research indicated that they are poor in

general. [27] These earlier findings are being refined by our findings, which

show that the impact of meetings and interruptions on productivity varies

depending on the project phase. Participants regarded them as “common

yet beneficial” during the specification, planning, and release phases. Not

at the development stage, but in the planning stage. “I spent way more

time in meetings than normal, but they were productive meetings”. [P4]

Meetings appear to be harmless, and many managers believe they have

done something by putting their sta↵ on the same page and informing

everyone on the status of current o�ce initiatives. Requiring engineers

to attend meetings throughout the day, on the other hand, is counter-

productive if the aim is to generate exceptional software. Meetings are

detrimental to developer productivity and morale [P2] [P4] [P5]. They are

a waste of a good developer’s time. The fewer meetings that developers

are forced to attend, the better the software generated and the morale of

the development team.

According to research done by [20], the average wasted time per significant

interruption is 23 minutes. It’s considerably worse for developers since you

50

5. Analysis 2

can’t quickly return to where you were before the interruption. You must

first adopt a development attitude before gradually returning to where you

left o↵. This may take more than 30 minutes.

Meetings usually have one or two purposes: to convey information or to

explore options such as potential solutions to problems or future e↵orts for

the company. There are certain meetings that happen because people do

not collaborate as they should, and it disturbs our momentum. Meetings

can be divided into 7 di↵erent categories, such as

• Brainstorming meetings (e.g. product development, Sprint) [P1- P5]

• Check-in meetings (e.g., project status update meetings, Daily/Weekly

team meetings) [P1- P5]

• Decision-making meetings (e.g., final approval of a design) [P3] [P5]

• One-on-one meetings (e.g. Client sales meetings, Coaching, or Men-

toring sessions) [P1] [P2] [P5]

• Problem-solving meetings (e.g., testing code, bug fixing, code review)

[P1] [P4]

• Quarterly planning meetings (e.g., project planning, strategic plan-

ning) [P2 - P5]

• Team-building meetings (e.g., virtual team challenges, internal TED

Talks) [P4]

Interruptions from co-workers

When someone wants to discuss something with you, you don’t have to

drop your current work immediately and listen to them [P3] [P4] [P5].

51

5. Analysis 2

Interruptions from co-workers and distractions such as background noise

in open-plan o�ces were found to negatively influence developers’ ability

to focus or work as planned. “Too many interruptions/context switches I

need a continuous block of time to be really productive as a coder, but I

find I get distracted/interrupted more than I’d like”. [P3]

“Meetings interrupt the flow state of e↵ective software development, forc-

ing me to restart the process of building the mental constructs needed to

create or modify software”. [P1]

“I can see the benefits, in as much as two heads can be better than one

sometimes. Sometimes you can stare at a page of code for a day and be

none the wiser as to how to proceed - an extra pair of eyes on the code can

be useful in that sort of situation”. [P2]

“It is a lifeline and a killer at the same time. Standard meetings like

knowledge transfers and defect triage make sense because we need them

for work. Basically, any meeting that is required to do your work is fine.

There are certain meetings which happen because people do not collaborate

as they should, and it disturbs our momentum”. [P3]

“I could see using pair programming for particularly hairy, complex de-

sign tasks. Any time you’re working on architecture, having two brains to

bounce ideas back and forth is great. You’re less likely to miss important

details that way, and for design work, an important detail can mean a lot

of code refactoring or rewriting if you don’t catch it until late in the game”.

[P4]

“All meetings have a cost. They interrupt work in progress. They may

require preparation. They take time to attend. They may distract workers

52

5. Analysis 2

after the fact. They may require time to process the information transmit-

ted. Di↵erent people will have di↵erent opinions on how much these costs

are and how valuable the result is”. [P5]

53

6. Discussion

This section summarizes the answers to the research questions, presents

implications for research and practice, and discusses the limitations of the

thesis.

From my three studies, i.e., Vlog analysis, Card Sorting Survey, and One-

to-one interview of software developers, I found that software development

by itself is a complex and daunting task. The quality of software also

depends on good teamwork, specifically with respect to the interaction

processes within a team. Since software development is primarily a team

e↵ort and the software developer is the key person who actually implements

the functionality, it is important to understand the factors that influence

software developers while working in a team.

Communication plays a vital role in ensuring that the various develop-

ment activities work in concert toward producing a software product in

an e�cient manner. Good communication in software engineering saves

time, reduces errors, maximizes the available budget, and creates a bet-

ter work environment for teams to be successful. According to the study

findings, it was evident that frequent and e↵ective communication among

team members positively influenced team performance. A software de-

velopment project’s success is dependent on e↵ective communication. In

54

6. Discussion

projects, both formal communication (i.e., scheduled meetings and writ-

ten status reports) and informal communication (i.e., quick phone calls

and short emails) are important whenever they are required. According

to [1], a lack of communication creates recurring problems related to the

development e↵ort, and to improve communication among members of a

software development team, an e↵ective process and the infrastructure to

support it must be provided.

The company can have multiple branches, and the team can be spread

across the world. Also, nowadays, companies are allowing their employees

to work with flexible timings. This is causing an availability/dependency

issue. Expertise has been recognized as an important factor influencing the

success of software projects. It is also acknowledged in agile software de-

velopment. Expertise dependencies were found in all of the case projects.

An expertise dependency is characterized as a circumstance in which tech-

nical or task knowledge is known exclusively to a single person or group,

and its absence has an impact on project development. From the interview

results, I found that when junior developers have some issues during their

tasks, they face the problem of communicating with their seniors as they

are not available at that time due to “flexible working” timings. which

results in the wasting of some working hours of the junior developer.

E↵ective communication is crucial in software development. Meetings that

are well-planned and handled may be quite beneficial. There are several

ways of determining whether or not a meeting is required, and each team

is di↵erent. From the Vlog analysis, Card Sorting Survey, and One-to-one

interview results, I found that all the participants work in an Agile envi-

ronment, either Scrum or Kanban. The literature usually describes daily

55

6. Discussion

meetings as a place for answering the three Scrum questions. However,

I found that, while the daily meeting was said to focus on answering the

three Scrum questions, most of the meeting was spent on other types of dis-

cussions and resulted in spending more time than the defined 15 minutes.

There’s nothing like a bad meeting to ruin productivity, and sometimes

the day. Meetings frustrate software engineers since they interrupt their

flow, and hence they see meetings as major distractions that reduce pro-

ductivity. Meetings are also viewed as unproductive, time-consuming, and

counterproductive to their work schedule.

In Pair Programming, two people jointly solve one single task. One person

is leading the work as the driver, and the other is constantly overlooking

what is happening as an observer. The observer is constantly watching

and supervising the present task while he also tries to find a solution for

the next task. A pair switches between being driver and observer, and they

also change people between other pairs. Pair programming can be used in

every development task, but it is mainly used in coding. Half the time,

doing one task by two people is not redundant because two people usually

find a solution quicker. They also implement it faster and produce it with

higher quality. But from the survey, I can conclude that there is too much

routine coding and easy tasks, so pairs should produce a maximum of 50%

of a project’s code. In general, respondents think pair programming is

only good when something becomes complicated; otherwise, they think it

is too time-consuming. If a special section or task is complicated, they can

see a quality increase e↵ect by using pairs, but otherwise, people state that

they work faster as singles. Respondents agree that pair programming is a

good technique to reduce defects and increase quality. But it is too time-

consuming and it cannot reduce other tasks enough to reduce the total

56

6. Discussion

development time.

Cooperation between team members gets increased when the quality and

acceptance of ideas are high within the team. Therefore, mutual support

can be considered an important element of teamwork that enables the team

members to achieve the team goals in an e�cient and e↵ective way.

Based on the result, 3 hypotheses are generated,

1. More than two meetings in a day can have an impact on a software

developer’s e�ciency in daily work.

2. Any type of interruption (from co-workers, or team leaders), may

a↵ect the productivity of developers.

3. Pair programming improves the quality of the code.

Limitation

There are some limitations to this study. First, this study was limited to

30 Vlogs, 11 card sorting participants, and 5 One-to-One interviews with

software developers. Due to time constraints, it was challenging to get in

touch with more software developers.

For card sorting, some participants were experts who had more than 5 years

of experience, and some participants were relatively new to the industry

or were students. Experts may have a di↵erent impression of a specific

card (activity) than the student or new person, who might not have any

knowledge or have just theoretical knowledge. This can give us a biased

result.

As I performed the card sorting survey online, there was no way to com-

57

6. Discussion

municate with participants other than by writing a short introduction and

instructions before the start of the survey. It is possible that for some par-

ticipants, the provided instructions are not su�cient enough to perform

the survey, and hence that can have an impact on the quality of the result.

Also, due to the online card sorting survey, there is no way to get infor-

mation on why participants sort the cards the way they do because it is

not possible to see the participants or hear them thinking aloud.

The above-mentioned results are the outcomes of the interviews of five

participants and the analysis of 30 vlogs. Adding on the number of par-

ticipants will shed light on di↵erent opinions or aspects regarding various

aspects a↵ecting software developers and might result in a broader scope.

58

7. Conclusion

The purpose of this thesis was to investigate the factors a↵ecting software

developers while working in a team. The research consists of three phases.

First, qualitative analysis of vlogs, card sorting, and one-to-one interviews

of professional software developers.

The findings suggest that teamwork is often considered one of the most

important ”generic skills” that we can provide to graduates entering the

information technology profession. From the analysis of the vlogs and in-

terview data, we found that software developers interact with their team

at least once during the working day as they use the agile software devel-

opment method.

We discovered many issues that software developers experience while work-

ing in teams, including communication within the team, availability/dependency,

interruption, and meetings. When developers work in a team, it makes it

easier to review coworkers’ work and give or take feedback from them.

Communication with colleagues is a more essential source of knowledge

than written documentation since written documentation is non-existent

and some developers prefer direct communication over writing documen-

tation. We found that developers use multiple communication channels

while working in a team. As information spreads across too many chan-

59

7. Conclusion

nels, it becomes hard to keep track, leading developers to miscommunica-

tion. Also, working from home leads to the intensification of employees.

Because coworkers are not immediately available, it will take more e↵ort

on the part of the individual employee to make use of their skills and

knowledge. We also noticed that frequent communication among team

members has a positive e↵ect on software development team performance,

so the communication can be either personal or through any communica-

tion medium.

The next factor we noticed was meetings. According to the result, soft-

ware developers have at least one meeting a day. Most programmers and

developers view meetings as a waste of time. The truth is that a lack of

meetings could result in professionals pulling in opposite directions, result-

ing in a massive waste of time and resources. However, there are several

steps that can be taken to make meetings more aligned with the program-

mer’s schedule and enhance their e�ciency. Long meetings can interrupt

the working flow. Another factor that a↵ects software developers is in-

terruptions when team members ask for help or when bottlenecks occur.

While software development teams benefit from knowledge sharing and a

shared mindset within the team, the amount of direct communication is

high and causes interruptions.

Regarding pair programming, In general, participants think pair program-

ming is only good when something becomes complicated; otherwise, they

think it is too time-consuming. If a special section or task is complicated,

they can see a quality increase e↵ect by using pairs, but otherwise, people

state that they work faster as singles. We also found that, agree that pair

programming is a good technique to reduce defects and increase quality.

60

Bibliography

[1] B. Curtis, H. Krasner and N. Iscoe. “A field study of the software de-
sign process for large systems”. Communications of the ACM, vol.31,
pp.1268-1287, 1988.

[2] Perlow, L. “The time famine: Toward a sociology of work Time”.
Administrative Science Quarterly, 44 , 1 (1999), 57-81.

[3] O’Conaill, B. and D. Frohlich. “Timespace in the workplace: Dealing
with interruptions. In Proceedings of the ACM conference on human
factors in computing systems (CHI’95) (Denver, CO, May 7, 1995)”.
ACM Press, 1995, 262-263.

[4] Garrick Saito. “What are stereotypes about software engineers
that are simply untrue”. Retrieved October 15, 2020 from
https://www.quora.com/What-are-stereotypes-about-software-
engineers-that-aresimply-untrue-for-the-most-part.

[5] Stephen Sinco. “How to Become a Software Developer: The Top
6 Myths Holding You Back”. Retrieved October 15, 2020 from
https://www.codingdojo.com/blog/5-myths-about-how-to-become-a-
software-developer.

[6] Armando Pantoja. “Stereotypes in IT: Armando, you don’t LOOK
like a software engineer!”. Retrieved October 15, 2020 from
linkedin.com/pulse/armando-you-dont-look-like-software-engineer-
armando-pantoja.

[7] Benton Rotchester. “Can we please stop stereotyping developers”. Re-
trieved October 15, 2020 from https: //medium.com/re-write/can-
we-please-stop-stereotyping-developers-63a870ea2857.

[8] Fannie Liu, Denae Ford, Chris Parnin, and Laura Dabbish. “Selfies
as Social Movements: Influences on Participation and Perceived Im-
pact on Stereotypes”. Proc. ACM Hum.-Comput. Interact. 1, CSCW,
Article 72 (Dec. 2017), 21 pages. https://doi.org/10.1145/3134707

61

BIBLIOGRAPHY

[9] Natalie Chiang. “Natalie Chiang on Her Transition into Com-
puter Science and Defying the Developer Stereotype”. Retrieved
October 15, 2020 from https://www.genw.ca/blog/natalie-chiang-
on-her-transition-into-computer-scienceand-not-fitting-the-mould-of-
a-software-developer.

[10] Saron Yitbarek. [n.d.]. “Code Newbies Podcast”. Retrieved October
15, 2020 from https://www.codenewbie.org/podcast.

[11] Whittaker, S., D. Frohlich, and O. Daly-Jones. “Informal workplace
communication: What is it like and how might we support it?” In
Proceedings of the ACM conference on human factors in computing
systems (CHI’94) (Boston, MA, April 24, 1994). ACM Press, 1994,
131-137.

[12] Hudson, J.M., J. Christensen, W.A. Kellogg, and T. Erickson. “I’d
be overwhelmed, ”: Availability and interruption in research manage-
ment. In Human factors in computing systems: Proceedings of CHI’02
(Minneapolis, MN, April 20, 2002). ACM Press, 2002, 97-104.

[13] Gonzalez, V.M. and G. Mark. “Constant, constant, multi-tasking
craziness”: Managing multiple working spheres”. In Human factors in
computing systems: Proceedings of CHI’04 (Vienna, Austria, April
24, 2004). ACM Press, 2004, 113- 120.

[14] Czerwinski, M., E. Horvitz, and S. Wilhite.“A diary study of task
switching and interruptions”. In Human factors in computing systems:
Proceedings of CHI’04 (Vienna, Austria, April 24, 2004). ACM Press,
2004, 175-182.

[15] Bannon, L., A. Cypher, S. Greenspan, and M.L. Monty. “Evaluation
and analysis of users’ activity organization”. In Proceedings of the
ACM conference on human factors in computing systems (CHI’83)
(Boston, MA, December 12, 1983). ACM Press, 1983, 54-57.

[16] Faraj, Samer, and Lee Sproull. “Coordinating Expertise in Software
Development Teams”. Management Science, vol. 46, no. 12, 2000, pp.
1554–68. JSTOR, http://www.jstor.org/stable/2661533. Accessed 4
Aug. 2022.

[17] Vinekar, V., Slinkman, C.W., Nerur, S., 2006. “Can ag-
ile and traditional systems development approaches coexist?
an ambidextrous view”. Inf. Syst. Manage. 23 (3), 31–42.
doi:10.1201/1078.10580530/46108.23.3.20060601/93705.4.

62

BIBLIOGRAPHY

[18] Stray, V., Sjøberg, D.I.K., Dyb̊a, T., 2016. “The daily stand-up
meeting: a grounded theory study”. J. Syst. Softw. 114, 101–124.
doi:10.1016/j.jss.2016.01.004

[19] Felstead, A. and G. Henseke (2017), “Assessing the Growth of Remote
Working and Its Consequences for E↵ort, Well being and Work life
Balance”, New Technology, Work and Employment 32 , 195–212

[20] Gloria Mark, “Professor in the Department of
Informatics at the University of California”
https://www.fastcompany.com/944128/worker-interrupted-cost-
task-switching

[21] Souti Chattopadhyay, Thomas Zimmermann, and Denae Ford.
2021. “Reel life vs. real life: how software developers share their
daily life through vlogs”. Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. Associa-
tion for Computing Machinery, New York, NY, USA, 404–415.
https://doi.org/10.1145/3468264.3468599

[22] V.G. Stray, N.B. Moe, and T. Dyb̊a, “Escalation of Commitment:A
Longitudinal Case Study of Daily Meetings, Agile Processes in Soft-
ware Engineering and Extreme Programming”. 13th International
Conference, Springer, 2012, pp. 153-167

[23] V.G. Stray, N.B. Moe, and T. Dingsøyr, “Challenges to Teamwork:
A Multiple Case Study of Two Agile Teams” Agile Processes in Soft-
ware Engineering and Extreme Programming:13th International Con-
ference, Springer, 2011, pp. 146-161.

[24] K. Schwaber and M. Beedle, Agile Software Development withScrum,
Prentice Hall, 2001.

[25] J. Yip, “It’s Not Just Standing Up:
Patterns of Daily Stand-upMeetings”.
http://www.martinfowler.com/articles/itsNotJustStandingUp.html,2011,
pp. 1-17.

[26] https://blog.authenticjourneys.info/2020/09/meaning-techie-words-
non-techies.html

[27] C. Parnin and S. Rugaber, “Resumption strategies for interrupted
programming tasks” Software Quality Journal, vol. 19, no. 1, pp. 5–34,
2011.

63

BIBLIOGRAPHY

[28] Joshi, K.D., Sarker, S., and Sarker, S. “KnowledgeTransfer within
Information Systems DevelopmentTeams: Examining the Role of
Knowledge SourceAttributes”. Decision Support Systems, Volume
43,Number 1, 2007, pp.322–335.

[29] Hewitt, B. and Walz, D. “Using Shared Leadershipto Foster Knowl-
edge Sharing in Information Sys-tems Development Projects”. Pro-
ceedings of the 38th Hawaii International Conference on System-
Sciences, 2005, pp.

[30] Dyb̊a, T., Dingsøyr, T.: “Empirical Studies of Agile Software Devel-
opment: A Systematic Review”. Information and Software Technology
50, 833–859 (2008)

[31] K. Schwaber and J. Sutherland, “The Scrum Guide.”
http://www.scrum.org/scrumguides/ Scrum Allience, 2011.

[32] VersionOne, “State of agile survey”.
http://www.versionone.com/state-of-agile-development-
survey/11/2011.

[33] T. L. Dickinson and R. M. McIntyre, “A Concetual Framework for
Teamwork Measurement ”in Team Performance Assessment and Mea-
surement: Theory, Methods, and Applications, M. T. Brannick, E.
Salas, and C. Prince, Eds., ed, 1997, pp. 19-43.

[34] E. Salas, D. E. Sims, and C. S. Burke, “Is there a ”big five” in team-
work?,” Small Group Research, vol. 36, pp. 555-599, Oct 2005.

[35] F.R.H. Zijlstra, R.A. Roe, A.B. Leonora, and I. Krediet, “Tempo-
ralfactors in mental work: E↵ects of interrupted activities,” Journal
ofOccupational and Organizational Psychology, vol. 72, no. 2, pp.163-
185, 1999.

[36] N. B. Moe, T. Dingsyr, and T. Dyba,“”A teamwork model for under-
standing an agile team: A case study of a Scrum project,” Information
and Software Technology, vol. 52, pp. 480-491, 2010.

[37] A. Luong and S.G. Rogelberg, “Meetings and More Meetings: TheRe-
lationship Between Meeting Load and the Daily Well-Being ofEmploy-
ees,” Group Dynamics: Theory, Research, and Practice,vol. 9, no. 1,
pp. 58-67, 2005.

64

BIBLIOGRAPHY

[38] A.C. Bluedorn, D.B. Turban, and M.S. Love, “The E↵ects ofStand-
Up and Sit-Down Meeting Formats on Meeting Outcomes,”Journal of
Applied Psychology, vol. 84, no. 2, pp. 277-285, 1999.

[39] N.C. Romano Jr and J.F. Nunamaker Jr, “Meeting analysis:Findings
from research and practice,” in Proceedings of the 34thAnnual Hawaii
International Conference on System Sciences,IEEE, 2001, pp. 13.

[40] S. Kau↵eld and N. Lehmann-Willenbrock, “Meetings MatterE↵ects of
Team Meetings on Team and Organizational Success,”Small Group
Research, vol. 43, no. 2, pp. 130-158, 2012.

[41] G. Asproni, “Motivation, Teamwork, and Agile Development,” Agile
Times, vol. 4, pp. 1-9, 2004.

[42] S.G. Rogelberg, D.J. Leach, P.B. Warr, and J.L. Burnfield, “Not An-
other Meeting! Are Meeting Time Demands Related toEmployee Well-
Being?,” Journal of Applied Psychology, vol. 91,no. 1, pp. 83-96, 2006.

[43] D.E. Perry, N. Staudenmayer, L.G. Votta, “People, organizations,
and process improvement”, IEEE Softw. 11 (4) (1994) 36–45.

[44] S. Datta, R. Sindhgatta, B. Sengupta, “Evolution of developer collab-
oration on the jazz platform: a study of a large scale agile project”,
Proceedings of the 4th India Software Engineering Conference, ACM:
Thiruvananthapuram, Kerala, India, 2011, pp. 21–30.

[45] T. Zimmermann, N. Nagappan, “Predicting defects using network
analysis on dependency graphs”, Proceedings of the 30th International
Conference on Software Engineering, ACM: Leipzig, Germany, 2008,
pp. 531–540.

[46] R.Abreu,R.Premraj, “How developer communication frequency relates
to bug introducing changes”. Joint International and Annual ERCIM
Workshops on Principles of Software Evolution (IWPSE) and Soft-
ware Evolution (Evol) Workshops IWPSEE Vol 09, ACM: Amster-
dam, The Netherlands, 2009, pp. 153–158.

[47] C. Bird, et al., “Mining email social networks”, Proceedings of the
2006 International Workshop on Mining Software Repositories, ACM:
Shanghai, China, 2006, pp. 137–143.

[48] M. Cataldo, et al.,“ Identification of coordination requirements: im-
plications for the Design of collaboration and awareness tool sv”, 20th

65

BIBLIOGRAPHY

Anniversary Conference on Computer Supported Cooperative Work,
06, ACM: Ban↵, Alberta, Canada, 2006, pp. 353–362.

[49] E. Shihab, et al., “On the central role of mailing lists in open source
projects: an exploratory study”, New Frontiers in Artificial Intelli-
gence, Springer, Berlin: Heidelberg, 2010, pp. 91–103.

[50] https://www.youtube.com/watch?v=z7mIkruXgJQab channel=
SinghinUSA

[51] https://www.youtube.com/watch?v=JrvgXQPkwEwab channel=
PetiaDavidova

[52] https://www.youtube.com/watch?v=yUegdy0wNnIab channel=
azisseno

[53] https://www.youtube.com/watch?v=obd7CeJdtr8ab channel=
marsela

[54] https://www.youtube.com/watch?v=ySxrVgCm7D0ab channel=
KevinChen

[55] https://www.youtube.com/watch?v=mOd7bU4DhQ4ab channel=
TylerSchott

[56] https://www.youtube.com/watch?v=nTzjmSesD-4ab channel=
Shuya

[57] https://www.youtube.com/watch?v=VQdniD1f6lkab channel=
Handrew

[58] https://www.youtube.com/watch?v=EXCagTkMNy4ab channel=
PURIJIT

[59] https://www.youtube.com/watch?v=0mFOf2UcOuQab channel=
kagato0110

[60] https://www.youtube.com/watch?v=4MUrNpysYhUab channel=
AshleeY

[61] https://www.youtube.com/watch?v=5aK0SwOk5BAab channel=
AlexLiu

[62] https://www.youtube.com/watch?v=aj0sOcgWERMab channel=
KcOkolo

66

BIBLIOGRAPHY

[63] https://www.youtube.com/watch?v=ZLRa1SjtpiQab channel=
marsela

[64] https://www.youtube.com/watch?v=Gtpfx5ZPIlwab channel=
IrisTabea

[65] https://www.youtube.com/watch?v=PE-7M6r7Ptcab channel=
HeyMarquece

[66] https://www.youtube.com/watch?v=7Mce1W5hBVIab channel=
DhritiChawla

[67] https://www.youtube.com/watch?v=6AWgwvJZpKcab channel=
SilverchipLtd

[68] https://www.youtube.com/watch?v=Qcr0rP4d-YIab channel=
TatumBair

[69] https://www.youtube.com/watch?v=7cxhqe3dWr4ab channel=
JapaneseJourney

[70] https://www.youtube.com/watch?v=47gRcB05S-sab channel=
VyTran

[71] https://www.youtube.com/watch?v=O62kAvoO9lMab channel=
sarahpan

[72] https://www.youtube.com/watch?v=oND980ijADoab channel=
CSJackie

[73] https://www.youtube.com/watch?v=1ib-H2iAuq4ab channel=
LeonZhu

[74] https://www.youtube.com/watch?v=jhSMg-AW35Mab channel=
ChildishJordino

[75] https://www.youtube.com/watch?v=5ELQoxVKMsQab channel=
MansoorCodes

[76] https://www.youtube.com/watch?v=nTzjmSesD-4ab channel=
Shuyai

[77] https://www.youtube.com/watch?v=d4fKCZH-1HIab channel=
joernies

67

BIBLIOGRAPHY

[78] https://www.youtube.com/watch?v=vt79JcPfZQAab channel=
ConnectEd

[79] https://www.youtube.com/watch?v=BxA9slRVRfwab channel=
GyasiLinje

68

A. Appendix 1 - Vlog List

No Location Gender Age Job
Type

Position Video
Date
(Month
and
year)

V1 USA Male 24 O�ce Developer/
Scrum
Master

12/2021

V2 London Female 25 O�ce Software
Engineer

12/2021

V3 Jakarta Male 27 O�ce Software
Engineer

05/2018

V4 Los Ange-
les

Female 26 WFH Software
Engineer

10/2021

V5 USA Male 31 WFH Hybrid
Software
Engineer

01/2022

V6 Atlanta Male 27 O�ce Software
Devel-
oper
Intern

11/2021

V7 Tokyo Male 30 O�ce Software
Engineer

12/2021

V8 New York Male O�ce Software
Engineer

11/2021

V9 Tokyo Male 28 O�ce Software
Engineer

10/2020

V10 Japan Male 32 Remote Software
Engineer

03/2020

V11 California Female 30 O�ce Software
Devel-
oper
Intern

10/2021

69

A. Appendix 1 - Vlog List

V12 London Male 24 WFH Software
Engineer

05/2021

V13 London Male 32 Remote Software
Engineer

03/2021

V14 Los Ange-
les

Female 28 WFH Software
Engineer

01/2021

V15 Spain Female 28 Remote Software
Engineer

11/2021

V16 USA Male 29 O�ce Software
Engineer

03/2020

V17 San Fran-
cisco

Female 27 WFH Software
Engineer

01/2022

V18 Manchester,
UK

Male 30 WFH Software
Devel-
oper

02/2022

V19 New York,
USA

Female 25 WFH Associate
Software
Engineer

04/2021

V20 Japan Male 28 WFH Software
Engineer

02/2021

V21 Chicago Female 26 WFH Software
Devel-
oper
Intern

08/2021

V22 New York,
USA

Female 27 WFH Software
Engineer

01/2022

V23 London Female 24 WFH Software
Engineer

01/2022

V24 Canada Male 25 WFH Software
Devel-
oper
Intern

01/2021

V25 Michigan Male 30 O�ce Software
Engineer

10/2019

V26 Canada Male 27 WFH Software
Engineer

04/2021

V27 Tokyo Male 26 O�ce Software
Engineer

12/2021

70

A. Appendix 1 - Vlog List

V28 Los Ange-
les

Male 28 WFH Software
Engineer

06/2022

V29 USA Female 27 WFH Software
Engineer

03/2015

V30 New York Male 29 Remote Frontend
Engineer

08/2021

Table A.2.: Vlog list

71

A. Appendix 2 - Vlog Analysis

No. Coding and pro-
gramming

Meetings Remote
Work/WFH

V1 Presentation of
work

Daily Standup,
KT Meeting

V2 Code blurred, Pull
request and test-
ing,Fixing bugs,
documentation,
Epic (feature)
Planning, Time-
lines

Daily Standup,
Weekly meeting
(2 hours)

V3 KT in team, Pair
programming

Team discussion,
team meeting

V4 Blur window, pull
request Code re-
view, releasing a
new version, bug
fixing, (Not much
time for coding
due to meeting)

Standup meeting,
company-wide
meeting (2 hours)
, Team wide demo
meeting, Retro
meeting

Working a bit late,
Flexible hours (at-
tended meetings)

V5 Coding (8–12),Af-
ternoon coding
work

Meeting with the
team (planning,
discussion), to
discuss issues
going on with the
project.

Attend meetings
from home and
then go to the
o�ce.

V6 Coding session
with manager,
API Backend in
Python, meeting
after lunch.

Standup meetings

72

A. Appendix 2 - Vlog Analysis

V7 Coding (when not
in a meeting)

Standup meeting,
team discussion,
team meeting
in the evening,
One-on-one meet-
ing (daily work
sharing and com-
munication tasks)

First, we’ll meet
at home, and then
we’ll go to the of-
fice.

V8 Code review, read-
ing documents,
coding, working
on slack threads

Daily standups,
coding interviews

V9 Coding Planning meetings
V10 Coding, code re-

view, bug fixing
Scrum meeting

V11 team meeting,
V12 Coding Daily meeting WFH due to

COVID
V13 Review: Pull re-

quest, Jira board
update, coding,
C# , Testing

Team meeting work from home.

V14 coding Standup meeting,
team meeting

V15 Slack threads,
Frontend and
backend coding,
Pair Program-
ming, Java

One-to-one meet-
ing, team meeting,
meeting with men-
tor

Fully remote

V16 Code writing,
code review in a
team, JIRA

Meeting in teams

V17 Android coding,
testing, fixing
bugs, cleaning up
code, tickets done

Team Meeting,
Flexible

Remote Work,
Flexible working
hours

73

A. Appendix 2 - Vlog Analysis

V18 Coding, Work on
assigned tickets,
minor changes,
bug fixes, new fea-
ture deployment

Daily Standup
meeting, other
team meetings

WFH due to pan-
demic, Flexible
Working hours

V19 DevOps and back-
end development,
unit testing, bug
fixes 10-to-20
%-day coding,
Pair Programming
with the team

Meetings on a
daily basis, with
teammates, with
newly joined
groups, with the
boss, and with
other code

WFH, flexible
working hours

V20 Team meeting
V21 Android, bug fix,

document design-
ing, Backend de-
velopment

2 hosts(guides),
weekly update
meeting, and a
daily meeting with
guides

Work from home
due to pandemic

V22 Coding and writ-
ing tests

Stand-up meet-
ing, PM and UX
designer, One-on-
one meeting: state
of the project

V23 Working on a
ticket, docu-
mentation, and
blurred screen

Every day stand-
up, On-call meet-
ing, Sprint plan-
ning, Team meet-
ing

COVID pandemic

V24 Coding Daily standup,
meeting with the
manager

Flexible working
hours

V25 Coding, Pair pro-
gramming, bug
finding and fixing,
KT in team

The daily standup
meeting

V26 Jira, Coding,
Start with an easy
task, API code,
backend applica-
tion

Daily
Standup,Feature
decision meeting

Home o�ceDue to
Lockdown

74

A. Appendix 2 - Vlog Analysis

V27 Coding Standup meeting,
team discussion,
team meeting in
the evening, One-
on-one meeting

V28 Building new fea-
tures, fixing bugs,
Swift UI, React
Native, JavaScript

Standup meetings,
product meetings,
architecture meet-
ings, architecture
meetings

V29 Website devel-
oper, backend,
python, HTML,
CSS, JavaScript

Team meeting,
discussion in the
team

V30 Coding, training,
starting a new
story, working
with React fea-
tures, working on
di↵erent features

There will be no
meeting on Fri-
day, but there will
be some informal
meetings with the
team.

Full remote work

Table A.2.: Vlogs Analysis

75

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background for the thesis
	1.2 Aim of the thesis
	1.3 Research methods
	1.3.1 Vlogs
	1.3.2 Qualitative research

	1.4 Thesis outline

	2 Related Work
	2.1 Team and Teamwork
	2.2 Team communication
	2.3 Meetings
	2.4 Software Developer Vlogs

	3 Data gathering and study design
	3.1 Data Collection
	3.2 Gathering Software Developer data through Vlogs
	3.3 Card Sorting
	3.4 Survey
	3.4.1 Interview Questions

	4 Analysis 1
	4.1 Analysis of Vlogs
	4.2 Card sorting Analysis

	5 Analysis 2
	5.1 Survey interviews Result
	5.1.1 Working in team
	5.1.2 Communication
	5.1.3 Meeting

	6 Discussion
	7 Conclusion
	Bibliography
	A Appendix 1 - Vlog List
	A Appendix 2 - Vlog Analysis

